ANSYS 14.5 Training

Download Course Brochure

Instructor-Led Training Parameters

Course Highlights

  • Instructor-led Online Training
  • Project Based Learning
  • Certified & Experienced Trainers
  • Course Completion Certificate
  • Lifetime e-Learning Access
  • 24x7 After Training Support

ANSYS 14.5 Training Course Overview

ANSYS training imparts the skills to develop the product design and use the simulation methods to solve the most challenging product engineering problems. This training allows users to analyze large product models before actual manufacturing. The participants explore about the software’s new innovations, including pre-processing functionalities; coupled physics capabilities; and high-performance computing advancements. The learning curve expands and allows the candidates to accomplish multiphysics workflows in structural, electromagnetics and thermal domains.

By the end of the training the following skills are inculcated in you:

  • Working of Finite Element Modeling (FEA)
  • Implementing bottom-up and top-down construction in basic and advanced Solid Modeling
  • Creating geometric entities and work planes
  • Importing solid models and IGES files
  • Meshing the solid models and defining its generation and density
  • Applying loads in different disciplines
  • Static and Advanced Structural Analysis
  • Describing the terms used in thermal analysis
  • Setting the analysis preferences among different types of thermal analysis
  • Solutions and Postprocessor
  • Calculate error estimation in solution
  • Using ANSYS report generator
  • Capturing data tables, lists, images, and animation for the report
Target audience

This training is recommended for the candidates who perform finite element analysis (FEA) of mechanical parts or fluids.


While there is no formal pre prerequisite for this training, however candidates with a strong interest in product design and engineering are the ideal participants for this course.

Instructor-led Training Live Online Classes

Suitable batches for you

Jul, 2024 Weekdays Mon-Fri Enquire Now
Weekend Sat-Sun Enquire Now
Aug, 2024 Weekdays Mon-Fri Enquire Now
Weekend Sat-Sun Enquire Now

Share details to upskills your team

Build Your Own Customize Schedule

ANSYS 14.5 Training Course Content

Introduction to FEA and Ansys

  • Introduction to FEA
  • General Working of FEA
  • Nodes, Elements, and Element Shapes
  • General Procedure of Conducting Finite Element Analysis
  • FEA through ANSYS
  • Effective Utilization of FEA
  • FEA Software
  • Advantages and Limitations of FEA Software
  • Key Assumptions in FEA
  • Assumptions Related to Geometry
  • Assumptions Related to Material Properties
  • Assumptions Related to Boundary Conditions
  • Assumptions Related to Fasteners
  • Types of Analysis
  • Structural Analysis
  • Thermal Analysis
  • Fluid Flow Analysis
  • Electromagnetic Field Analysis
  • Coupled Field Analysis
  • Important Terms and Definitions
  • Strength (Resistance to Deformation)
  • Load
  • Stress
  • Strain
  • Elastic Limit
  • Ultimate Strength
  • Factor of Safety
  • Lateral Strain and Poisson’s Ratio
  • Bulk Modulus
  • Creep
  • Engineering Materials
  • Introduction to ANSYS
  • System Requirements
  • Getting Started with ANSYS
  • Interactive Mode
  • Batch Mode
  • Starting a New File Using the ANSYS Product Launcher window
  • ANSYS Output Window
  • ANSYS Metaphysics Utility Menu Window (ANSYS Session)
  • Utility Menu
  • Main Menu
  • Graphics Area
  • Standard Toolbar
  • ANSYS Command Prompt
  • Command Window Icon
  • Raise Hidden Icon
  • Reset Picking
  • Contact Manager
  • ANSYS Toolbar
  • Model Control Toolbar
  • User Prompt Information
  • Current Settings
  • Setting the Analysis Preferences
  • Units in ANSYS
  • Other Important Terms Related to ANSYS
  • Dialog Boxes
  • Graphics Display
  • Panning, Zooming, and Rotating the Model
  • Dividing the Graphics Area
  • The Pan-Zoom-Rotate Dialog Box
  • Graphics Picking
  • Using Mouse Buttons for Picking
  • ANSYS Database and Files
  • Saving the File
  • Resuming the File
  • Clearing the Database
  • Some Basic Steps in General Analysis Procedure
  • Points to Remember while Performing an Analysis
  • Exiting ANSYS
  • Self-Evaluation Test

Basic Solid Modeling

  • Solid Modeling in ANSYS
  • Solid Modeling and Direct Generation
  • Solid Modeling Methods
  • Bottom-up Construction
  • Top-down Construction
  • Considerations before Creating a Model for Analysis
  • Details Required
  • Symmetry
  • Creating Geometric Entities
  • Creating Lines
  • Creating Arcs
  • Creating B-Spines
  • Creating Fillets between Intersecting Lines
  • Creating Areas
  • Creating and Modifying Work planes
  • Display Working Plane
  • Show WP Status
  • WP Settings
  • Offset WP by Increments
  • Offset WP to
  • Align WP with
  • Coordinate Systems in ANSYS
  • Global Coordinate System
  • Local Coordinate System
  • Active Coordinate System
  • Display Coordinate System
  • Nodal Coordinate System
  • Element Coordinate System
  • Results Coordinate System
  • Creating New Coordinate Systems
  • Deleting Existing Coordinate

Advanced Solid Modeling

  • Advanced Solid Modeling
  • Creating Volumes
  • Extruding Entities
  • Extending the Line
  • Creating Complex Solid Models by Performing Boolean Operations
  • Modifying the Solid Model
  • Scale
  • Move
  • Copy
  • Reflect
  • Deleting Solid Model Entities
  • Importing Solid Models
  • Importing the IGES File
  • Importing Models from Pro/ENGINEER
  • Importing the Model from Unigraphics

Finite Element Modeling (FEM) – I

  • An Overview of the Finite Element Modeling
  • Element Attributes
  • Element Types
  • Reasons Why ANSYS has a Large Element Library
  • Real Constants
  • Material Properties
  • Multiple Attributes
  • Assigning Multiple Attributes before Meshing
  • Assigning Default Attributes before Meshing
  • Modifying Attributes after Meshing
  • Verifying Assigned Attributes
  • Element Attributes Table

Finite Element Modeling (FEM) – II

  • Finite Element Modeling (FEM) - II
  • Mesh Generation
  • Mesh Density
  • Meshing the Solid Model
  • Setting Element Attributes
  • Defining the Mesh
  • Defining the Entity to be Meshed
  • Defining the Meshing Type
  • Meshing the Model
  • Refining the Mesh Locally
  • Extruding the Mesh
  • Transitional Pyramid Elements
  • Requirements for Creating Pyramid Elements
  • Creating Transitional Pyramid Elements (Hex-to-Tet Meshing)
  • Converting Degenerate Tetrahedral (20 nodes) Elements into
  • Non-degenerate (10 nodes) Tetrahedral Elements
  • Plotting Pyramid Elements
  • Meshing the Beam with Orientation Nodes
  • Creating the Beam Mesh with Orientation Nodes
  • Creating the Beam Mesh with Two Orientation Nodes
  • Improving the Tetrahedral Element Meshes
  • Improving Tetrahedral Meshed Volumes by Using Volumes
  • Improving Tetrahedral Meshed Volumes by Using Detached Elements
  • Some Additional Tips while Meshing the Model
  • Applying Loads
  • The Nodal Coordinate System
  • Loads in Different Disciplines
  • Types of Loads in ANSYS
  • Load Steps, Sub steps, and Time
  • Applying Loads
  • Deleting Loads
  • Deleting DOF Constraints
  • Deleting all Loads and Load Step Options
  • Deleting all Loads Applied on Solid Model
  • Deleting all Loads Applied on Finite Element Model

Solution And Postprocessor

  • Solution
  • Defining the New Analysis Type
  • Restarting the Analysis
  • Setting Solution Controls
  • Setting Analysis Options
  • Solving the Analysis Problem
  • Post processing the Result
  • POST1 (General Postprocessor)
  • POST26 (Time-history Postprocessor)
  • Result Coordinate System (RSYS)
  • Displaying the Deformed Shape of the Model
  • Displaying the Minimum and Maximum Stresses
  • Listing Reaction Forces
  • Listing Stress Values at each Node
  • Query Picking
  • Path Operations
  • Load Case Combinations

Static Structural Analysis

  • Effect of self-weight on a cantilever beam
  • Analysis of a bicycle handle
  • Analysis of a stud (pin)
  • Analysis of a master

Advanced Structural Analysis (Dynamic And Nonlinear)

  • Advanced Structural Analysis
  • Dynamic Analysis
  • Performing the Modal Analysis
  • Specifying the Analysis Type, Analysis Options, and Applying Loads
  • Obtaining the Solution
  • Reviewing Results
  • Performing the Harmonic Analysis
  • Specifying the Analysis Type, Analysis Options, and Applying Loads
  • Obtaining the Solution
  • Reviewing Results
  • Performing the Transient Analysis
  • Specifying the Analysis Type, Analysis Options, and Applying Loads
  • Obtaining the Solution
  • Reviewing Results
  • Nonlinear Analysis
  • Geometric Nonlinearity
  • Material Nonlinearity
  • Boundary Nonlinearity (Changing Status)
  • Performing the Nonlinear Analysis
  • Specifying the Analysis Type, Setting Solution Controls, and
  • Applying Loads
  • Obtaining the Solution

Advanced Structural Analysis

  • Steel tubes and springs structure
  • Modal analysis of an airplane wing
  • Nonlinear analysis (material nonlinearity)

Thermal Analysis

  • Thermal Analysis
  • Important Terms Used in Thermal Analysis
  • Heat Transfer Modes
  • Thermal Gradient
  • Thermal Flux
  • Bulk Temperature
  • Film Coefficient
  • Emissivity
  • Stefan–Boltzmann Constant
  • Thermal Conductivity
  • Specific Heat
  • Types of Thermal Analysis
  • Steady-State Thermal Analysis
  • Transient Thermal Analysis
  • Performing Steady-State Thermal Analysis
  • Setting the Analysis Preference
  • Creating or Importing a Solid Model
  • Defining Element Attributes
  • Meshing the Solid Model
  • Specifying the Analysis Type, Analysis Options, and Applying Loads
  • Solving the Analysis Problem
  • Post processing Results
  • Performing Transient Thermal Analysis
  • Specifying the Analysis Type and Setting Solution Controls

Generating The Report Of Analysis

  • Starting the ANSYS Report Generator
  • Capturing Images for the Report
  • Capturing Animations for the Report
  • Capturing Data Tables for the Report
  • Capturing Lists for the Report
  • Compiling the Report
  • Changing the Default Settings of the ANSYS Report Generator
  • Error Estimation in Solution
  • Percentage Error in Energy Norm (SEPC)
  • Element Energy Error (SERR)
  • Element Stress Deviations (SDSG)
  • Maximum and Minimum Stress Bounds (SMXB and SMNB)


Request for Enquiry


ANSYS 14.5 Training (MCQ) Assessment

This assessment tests understanding of course content through MCQ and short answers, analytical thinking, problem-solving abilities, and effective communication of ideas. Some Multisoft Assessment Features :

  • User-friendly interface for easy navigation
  • Secure login and authentication measures to protect data
  • Automated scoring and grading to save time
  • Time limits and countdown timers to manage duration.
Try It Now

ANSYS 14.5 Corporate Training

Employee training and development programs are essential to the success of businesses worldwide. With our best-in-class corporate trainings you can enhance employee productivity and increase efficiency of your organization. Created by global subject matter experts, we offer highest quality content that are tailored to match your company’s learning goals and budget.

Global Clients
4.5 Client Satisfaction
Explore More

Customized Training

Be it schedule, duration or course material, you can entirely customize the trainings depending on the learning requirements


Be it schedule, duration or course material, you can entirely customize the trainings depending on the learning requirements

360º Learning Solution

Be it schedule, duration or course material, you can entirely customize the trainings depending on the learning requirements

Learning Assessment

Be it schedule, duration or course material, you can entirely customize the trainings depending on the learning requirements

Certification Training Achievements: Recognizing Professional Expertise

Multisoft Systems is the “one-top learning platform” for everyone. Get trained with certified industry experts and receive a globally-recognized training certificate. Some Multisoft Training Certificate Features :

  • Globally recognized certificate
  • Course ID & Course Name
  • Certificate with Date of Issuance
  • Name and Digital Signature of the Awardee
Request for Certificate

What Attendees are Saying

Our clients love working with us! They appreciate our expertise, excellent communication, and exceptional results. Trustworthy partners for business success.

Share Feedback
  Chat On WhatsApp


Available 24x7 for your queries